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Adversarial Machine Learning (AML) has emerged as a critical area of research
within network security, addressing the evolving challenge of adversaries
exploiting machine learning (ML) models. This systematic review adopts the
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
methodology to comprehensively examine threat vectors and defense
mechanisms in AML. The study identifies, categorizes, and evaluates existing
research focused on adversarial attacks targeting ML algorithms in network
security applications, including evasion, poisoning, and model extraction
attacks. By rigorously following the PRISMA guidelines, a systematic search
across multiple scholarly databases yielded a robust dataset of peer-reviewed
articles that were screened, reviewed, and analyzed for inclusion. The review
outlines key adversarial techniques employed against ML systems, such as
gradient-based attack strategies and black-box attacks and explores the
underlying vulnerabilities in network security architectures. Additionally, it
highlights defense mechanisms,
preprocessing, and robust model design, discussing their efficacy and limitations
in mitigating adversarial threats. The study also identifies critical gaps in current
research, such as the lack of standardized benchmarking for adversarial defenses

including adversarial training,

and the need for scalable and real-time AML solutions.

input

1 INTRODUCTION

The rapid integration of machine learning (ML) into
network security systems has revolutionized the
detection and mitigation of cyber threats, enabling
advanced capabilities in areas like intrusion detection,
spam filtering, and anomaly detection (Grosse et al.,
2023). However, this integration has also exposed ML
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models to a new category of risks—adversarial
attacks—that exploit the inherent vulnerabilities in
these systems (Zhang et al., 2019). Adversarial Machine
Learning (AML) involves techniques used by malicious
actors to deceive or compromise ML models by
manipulating inputs, leading to incorrect outputs or
exposing sensitive information (Raza et al., 2024). As
ML becomes a foundational component in safeguarding
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critical infrastructure, understanding how adversaries
exploit these systems is crucial. For example, studies
have revealed that even well-trained ML models can be
deceived with imperceptible perturbations to input data,
making the systems vulnerable to significant breaches
(Liu et al., 2018). The dual-edged nature of ML’s
deployment in network security highlights the urgency
of comprehensively addressing adversarial
threats(Ahmad et al., 2020).

Adversarial attacks in AML can be categorized into
evasion, poisoning, and model extraction attacks, each
targeting different stages of the ML pipeline (Calleja et
al., 2018). Evasion attacks manipulate input data during
inference, enabling adversaries to bypass detection
systems. Poisoning attacks, by contrast, compromise
the integrity of training data, leading to biased or
dysfunctional models (Watkins et al., 2024). Model
extraction attacks, which aim to replicate a model’s
functionality or access sensitive training data, represent
another sophisticated threat vector (Tibshirani, 1996).
These attacks are particularly concerning in scenarios
involving public-facing ML applications, where access
to the model's outputs is easier. For instance,
Olowononi et al. (2021) demonstrated that black-box
attacks could reverse-engineer models with minimal
queries, underlining the pressing need for robust
countermeasures. The diversity and sophistication of
these attack strategies underscore the growing necessity
for a multi-faceted approach to AML in network
security. To combat adversarial threats, researchers
have proposed a range of defense mechanisms,
including  adversarial ~ training,  preprocessing
techniques, and the development of robust model

architectures. Adversarial training involves augmenting
datasets with adversarial examples during the training
phase, improving the model’s ability to recognize and
resist malicious inputs (Homer et al., 2008). Input
preprocessing, such as feature denoising and
normalization, offers another layer of protection by
mitigating the impact of adversarial perturbations
before the data reaches the model (Venkatesan et al.,
2021). Additionally, advanced techniques like
defensive distillation and gradient obfuscation aim to
enhance model robustness by modifying the learning
process or concealing gradient information from
attackers (Tibshirani, 1996). However, the effectiveness
of these defenses varies significantly across attack
types, and many solutions face scalability challenges,
particularly in real-time applications (Mazumder et al.,
2024). Consequently, developing generalized and
scalable defense mechanisms remains a critical area of
research.

The broader implications of AML in network security
extend to ethical, legal, and operational dimensions. As
ML applications expand into sensitive domains such as
finance, healthcare, and national defense, adversarial
attacks can lead to catastrophic consequences, including
financial losses, breaches of personal data, and
compromised public safety (Ahmad et al., 2020; Alam
et al.,, 2024). For instance, Zhao et al. (2022)
demonstrated that adversarial examples could bypass
ML-based image recognition systems in physical-world
settings, raising concerns about the reliability of these
models in high-stakes environments. Furthermore, the
lack of standardized benchmarks for evaluating the
performance of defense mechanisms complicates

Figure 1: Adversarial Robustness Toolbox (ART)
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efforts to measure their efficacy and foster innovation
(Hasan et al., 2024). Addressing these challenges
requires a holistic approach that not only strengthens
technical defenses but also considers the socio-technical
context in which AML systems operate (Islam et al.,
2024). The primary objective of this systematic review
is to provide a comprehensive analysis of adversarial
machine learning (AML) within the context of network
security, with a specific focus on identifying and
categorizing threat vectors and evaluating defense
mechanisms. By employing the PRISMA methodology,
this study seeks to synthesize existing research to
elucidate the nature and scope of adversarial attacks,
such as evasion, poisoning, and model extraction, and
their impact on ML-driven network security systems.
Furthermore, the review aims to critically examine the
effectiveness of various defense mechanisms, including
adversarial training, input preprocessing, and robust
model design, to determine their strengths, limitations,
and applicability in real-world scenarios. An additional
objective is to identify critical gaps in the current body
of knowledge, such as the absence of standardized
benchmarks for defense evaluation and the limited
scalability of existing solutions. Through these
objectives, this study aspires to contribute to the
development of more resilient and adaptive AML
frameworks, facilitating the secure deployment of ML
in network security applications.

2 LITERATURE REVIEW

The field of adversarial machine learning (AML) in
network security has garnered significant academic and
industry attention due to the increasing adoption of
machine learning (ML) models in security-critical
applications. The literature on AML is rich with studies
that explore adversarial attacks, defense mechanisms,
and their implications for network security. This section
systematically reviews the existing body of knowledge,
providing a detailed analysis of key concepts,
methodologies, and findings. By synthesizing insights
from recent studies, this literature review aims to
categorize adversarial threat vectors, evaluate defense
mechanisms, and highlight gaps in the research
landscape. The review is structured to offer a thematic
exploration of adversarial attacks and their technical
underpinnings, followed by an evaluation of existing
defenses and their limitations. It concludes with a
discussion of unresolved challenges and future research

directions, providing a foundation for advancing AML
in network security.

2.1 Adversarial Machine Learning in Network
Security

Adversarial Machine Learning (AML) has emerged as
a critical field in the intersection of machine learning
(ML) and network security, addressing the
vulnerabilities of ML systems to adversarial attacks
(Homer et al., 2008). These attacks exploit the inherent
weaknesses of ML models, such as their reliance on
training data and susceptibility to perturbations, to
compromise their functionality (Alam, 2024). In
network security, ML models are commonly used for
intrusion detection, anomaly detection, and malware
classification. However, adversarial techniques,
including evasion, poisoning, and model extraction
attacks, threaten the reliability of these applications
(Mosleuzzaman et al., 2024). For example, evasion
attacks bypass anomaly detection systems by subtly
altering input features, while poisoning attacks corrupt
the training datasets, leading to degraded model
performance (Mosleuzzaman et al., 2024). As ML
becomes increasingly integrated into  critical
infrastructure, understanding these vulnerabilities and
their implications is essential to ensure the secure
deployment of these systems (Mosleuzzaman et al.,
2024).

The challenges posed by adversarial attacks on ML
systems are multifaceted, extending from technical
limitations to ethical and operational risks (Nandi et al.,
2024). Technically, ML models are often treated as
black boxes, which makes it challenging to identify and
address their vulnerabilities before deployment
(Rahaman et al., 2024). Gradient-based attacks, such as
the Fast Gradient Sign Method (FGSM), exploit these
black-box characteristics to craft adversarial examples
that mislead the model (Rahman, 2024). Furthermore,
poisoning attacks compromise the training phase,
embedding vulnerabilities that attackers can later
exploit (Rahman, 2024). Operationally, adversarial
attacks pose significant risks to privacy and data
integrity. For instance, model extraction attacks can
reveal sensitive information about the training dataset
or the underlying architecture of the model (Rahman,
2024). These challenges are further exacerbated by the
lack of standardized benchmarks to evaluate adversarial
defenses, making it difficult to compare the
effectiveness of different solutions (Rahman et al.
2024). Addressing these vulnerabilities is imperative to
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ensure the secure deployment of ML systems in
network security applications. One of the most
researched solutions is adversarial training, which
involves exposing models to adversarial examples
during training to improve their robustness (Rahman et
al., 2024). Input preprocessing techniques, such as
feature denoising and input normalization, are also
widely explored as first-line defenses against
adversarial attacks (Shamsuzzaman et al., 2024).
Additionally, robust model design approaches,
including  defensive distillation and gradient
obfuscation, have shown promise in enhancing model
resistance to gradient-based attacks (Tsai et al., 20009;
Zou & Hastie, 2005). However, these defenses have
limitations, including reduced generalizability and
scalability in real-time applications (Shorna et al.,
2024). Recent studies emphasize the importance of
combining multiple defense mechanisms to create more
resilient systems (Shorna et al., 2024). Beyond technical
defenses, ensuring the secure deployment of ML
systems requires a holistic approach that integrates
technical, operational, and ethical considerations (Sohel
et al., 2024). For example, employing secure data
collection and labeling practices can reduce the risk of
poisoning attacks, while ongoing monitoring and
validation of deployed models can help detect
adversarial activity in real-time (Sultana & Aktar,
2024). Furthermore, advancements in explainable Al
(XAl) can provide greater transparency into model
decision-making, enabling security teams to identify
potential vulnerabilities proactively (Uddin, 2024).

2.2  Adversarial Threat Vectors

Adversarial attacks on machine learning (ML) systems
pose significant challenges in network security, with
evasion attacks being one of the most prevalent and
studied threats. These attacks manipulate input data
during inference, subtly altering its features to deceive
the ML model without triggering detection mechanisms
(Uddin & Hossan, 2024). For instance, adversarial
examples crafted using gradient-based techniques, such
as the Fast Gradient Sign Method (FGSM), exploit the
vulnerabilities in model gradients to bypass intrusion
detection systems (Homoliak et al., 2019). Case studies
highlight the susceptibility of network intrusion
detection systems (NIDS) to evasion attacks, where
adversaries modify packet headers or payloads to elude
detection algorithms (Lecuyer et al., 2019; Papernot et
al., 2016). For example, Colbaugh and Glass (2013)
demonstrated how adversarial perturbations in network

traffic data could evade deep learning-based intrusion
detection models with high accuracy. These findings
underscore the need for improved model robustness and
real-time defenses to counter evasion threats
effectively. Poisoning attacks present a distinct
challenge by targeting the training phase of ML
systems. These attacks involve introducing malicious
data into the training dataset, corrupting the model’s
ability to generalize and perform accurately (Lowd &
Meek, 2005). Poisoning methods often exploit the over-
reliance of ML models on clean and representative data,
injecting manipulated samples that bias the model’s
decision-making process (Kumar et al., 2020). Real-
world examples, such as the backdoor attacks on email
spam filters, demonstrate the severe implications of
poisoning, where specific trigger patterns in training
data cause the model to misclassify harmful inputs
(Malik et al., 2024). Additionally, Carlini and Wagner
(2018) highlighted how poisoning attacks could render
cybersecurity systems ineffective, especially in
collaborative or federated learning scenarios where data
is sourced from multiple untrusted entities. Addressing
these threats requires robust data validation protocols
and mechanisms to detect anomalies in training
datasets.

Model extraction attacks represent another critical
vector, wherein adversaries aim to replicate or steal the
functionality of an ML model by querying it
systematically. These attacks exploit the input-output
relationship of ML models to reconstruct their internal
parameters, effectively reverse-engineering the system
(Balle et al., 2022). For instance, studies have shown
how adversaries can replicate proprietary deep learning
models used in network security by leveraging only a
limited number of queries, exposing trade secrets and
intellectual property (Papernot et al., 2016). The
implications of model extraction extend beyond model
theft to include the potential misuse of stolen models for
evasion or poisoning attacks (Wang et al., 2019). Such
risks highlight the need for secure API designs and
techniques like query rate limiting and differential
privacy to safeguard ML models from unauthorized
access and reverse engineering. Moreover, Hybrid and
emerging attack strategies further complicate the
adversarial landscape by combining multiple threat
vectors to enhance their effectiveness. Hybrid attacks,
such as those integrating evasion and poisoning
techniques, simultaneously compromise training data
and inference phases, creating more robust and
undetectable adversarial examples (Malik et al., 2024).
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Figure 2:Classification of Adversarial Machine Learning (AML) attacks
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Emerging threats, including attacks leveraging 2.3 Defense Mechanisms Against Adversarial

generative adversarial networks (GANS), present novel
challenges by automating the generation of
sophisticated adversarial samples (Madry et al., 2017).
For example, GAN-based techniques have been used to
craft perturbations that evade not only detection

Attacks

Adversarial training is one of the most widely studied
defense mechanisms against adversarial attacks,
focusing on improving model robustness by
augmenting training datasets with adversarial examples.

systems but also human scrutiny, increasing the risk of
undetected breaches in critical applications (Biggio &
Roli, 2018). As adversaries continue to innovate, the
need for proactive research into hybrid and emerging
threats remains urgent, emphasizing the importance of
adaptive defenses capable of addressing complex and
evolving attack strategies.

This method aims to expose the model to potential
threats during the training phase, enabling it to learn
patterns and resist adversarial perturbations (Marino et
al., 2018). Pierazzi et al. (2020) demonstrated that
adversarial training could significantly enhance the
resilience of deep neural networks to gradient-based
attacks like FGSM and Projected Gradient Descent
(PGD). However, adversarial training is
computationally expensive, often requiring substantial

Figure 3: Defense Mechanisms Against Adversarial Attacks
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resources to generate adversarial examples and retrain
models (Colbaugh & Glass, 2013). Additionally, while
it can increase robustness against specific attack types,
its generalizability across diverse adversarial
techniques remains limited (Wang et al., 2019). Input
preprocessing techniques offer another layer of defense
by mitigating the impact of adversarial perturbations
before data is fed into the model. These techniques
include input normalization, feature denoising, and
dimensionality reduction, which aim to remove
adversarial noise from the input data (Warzynski &
Kotaczek, 2018). For example, pixel-wise
transformations and feature squeezing have been shown
to reduce the effectiveness of adversarial examples in
image classification tasks (Kumar et al., 2020).
Preprocessing methods are particularly effective against
black-box attacks, where the adversary lacks direct
access to model parameters (Sharon et al., 2022).
However, their effectiveness can vary depending on the
nature of the adversarial attack and the underlying ML
model. Duddu (2018) emphasized that preprocessing
techniques might inadvertently degrade model
performance on benign inputs, highlighting the trade-
offs involved in their application. Comparative studies
reveal that combining multiple preprocessing methods
can enhance their overall efficacy, particularly in
dynamic network environments.

Robust model design focuses on architectural
innovations to strengthen ML models against
adversarial attacks. Techniques such as defensive
distillation, gradient obfuscation, and adversarial
feature masking are designed to make it more
challenging for adversaries to exploit model
vulnerabilities (Wang et al.,, 2021). Defensive
distillation, for instance, modifies the training process
to reduce the sensitivity of the model to small
perturbations, effectively countering gradient-based
attacks (Madry et al., 2017). Gradient obfuscation, on
the other hand, aims to obscure the gradient information
required by attackers to generate adversarial examples
(Colbaugh & Glass, 2013). While these methods show
promise in enhancing model robustness, studies
highlight their limitations, such as susceptibility to
advanced adaptive attacks that bypass these defenses
(Duddu, 2018). Case studies, such as those analyzing
robust architectures for intrusion detection systems,
demonstrate that combining robust design principles
with other defense mechanisms can provide more
comprehensive protection. Ensemble defenses leverage
the diversity of multiple models to increase system

resilience against adversarial attacks (Warzynski &
Kotaczek, 2018). By combining the predictions of
multiple independently trained models, ensemble
methods reduce the likelihood that a single adversarial
example will compromise the entire system (Lecuyer et
al., 2019). This approach is particularly effective in
scenarios where adversarial attacks target specific
model architectures or training techniques. Malik et al.
(2024)  demonstrated that ensemble  methods
significantly enhance resilience against black-box and
transfer attacks, as attackers must craft adversarial
examples that generalize across multiple models.
However, ensemble methods also face challenges, such
as increased computational complexity and the risk of
correlated vulnerabilities among models (Apruzzese &
Colajanni, 2018). Evaluations indicate that combining
ensemble defenses with preprocessing techniques and
adversarial training can mitigate these challenges,
providing robust and scalable solutions to adversarial
threats in network security.

Adversarial Attacks on Network Security

The vulnerabilities in network security architectures
often amplify the risks posed by adversarial machine
learning (AML) attacks. Many ML-based systems rely
on fixed and predictable decision-making pipelines,
which adversaries can exploit to craft targeted attacks
(Wang et al., 2019). For instance, Kumar et al. (2020)
identified that the lack of dynamic defenses in
traditional intrusion detection systems (IDS) creates
opportunities for adversaries to bypass detection
mechanisms using evasion attacks. Architectural flaws,
such as the over-reliance on static thresholds and the
absence of anomaly detection in critical data paths,
make these systems particularly susceptible to adaptive
adversarial techniques (Homoliak et al., 2019).
Furthermore, Marino et al. (2018) highlighted that the
exposure of model APIs in network security
applications, such as fraud detection and malware
classification, increases the risk of model extraction and
poisoning attacks. Addressing these vulnerabilities
requires rethinking architectural designs to incorporate
dynamic, adaptable, and robust defense mechanisms
capable of countering evolving adversarial threats
(Colbaugh & Glass, 2013). Moreover, adversarial
attacks pose significant implications for user privacy
and data integrity in network security systems (Kumar
et al., 2020). Attacks such as model extraction can
expose sensitive information embedded in training
datasets, violating user privacy and potentially leading
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to identity theft or unauthorized access to personal data
(Sharon et al., 2022). Similarly, poisoning attacks that
manipulate training datasets can compromise the
integrity of data-driven decisions, resulting in
misclassifications that adversely affect end-users (Kim
et al., 2018). Alotaibi and Rassam (2023) demonstrated
how adversarial examples could exploit vulnerabilities
in face recognition systems, enabling unauthorized
access to secure facilities. Additionally, attacks on
healthcare systems using adversarial ML have been
shown to manipulate diagnostic outputs, jeopardizing
patient safety and trust in these systems (He et al.,
2023). These findings emphasize the need for rigorous
data validation and monitoring protocols to protect user
privacy and maintain data integrity in adversarial
environments. Moreover, the operational and financial
impacts of adversarial attacks on network security
systems are both profound and far-reaching. Successful
adversarial attacks can disrupt critical operations,
leading to service outages, reputational damage, and
financial losses (Huang et al., 2011). For example,
Menéndez et al. (2019) reported that evasion attacks on
financial transaction monitoring systems resulted in
undetected fraudulent transactions, causing millions of
dollars in losses. In another case, Yan et al. (2019)
illustrated how poisoning attacks on autonomous
vehicle navigation systems could lead to traffic
disruptions and accidents, demonstrating the real-world
operational consequences of AML vulnerabilities.
Furthermore, McClintick et al. (2022) highlighted the

Figure 4: Adversarial Attacks on Network Security
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financial risks of intellectual property theft through
model extraction attacks, which enable competitors to
replicate proprietary algorithms without incurring
development costs. These case studies underscore the
critical importance of robust AML defenses to
safeguard both the operational continuity and financial
stability of organizations relying on ML-based network
security systems. The growing sophistication of
adversarial attacks necessitates a multi-faceted
approach to mitigate their impact on network security.
While technical defenses are essential, organizations
must also address the systemic and procedural
weaknesses that adversaries exploit (Wang et al., 2019).
Yan et al. (2019) emphasized the importance of
integrating adversarial resilience into the design of ML
models and network architectures to preemptively
counteract potential threats. Additionally, regular stress
testing and simulations of adversarial scenarios can help
organizations identify and address vulnerabilities
before they are exploited in real-world attacks (Sauka et
al., 2022). By combining technical advancements with
proactive operational strategies, organizations can
reduce the operational, financial, and privacy risks
posed by adversarial attacks, ensuring a more secure
network environment.

2.4  Evaluation of Defense Mechanisms

The lack of standardized benchmarks for evaluating
adversarial machine learning (AML) defenses poses a
significant challenge to advancing the field (Huang et
al., 2011). Current evaluation frameworks vary widely
in their methodologies, datasets, and performance
metrics, making it difficult to compare the effectiveness
of different defense mechanisms (Yan et al., 2019). For
example, adversarial training strategies often report
results based on specific attack types and datasets,
limiting their generalizability across diverse scenarios
(Rosenberg et al., 2021). Alhajjar et al. (2021)
emphasized that without standardized evaluation
criteria, researchers may inadvertently design defenses
that perform well only under specific conditions but fail
against more sophisticated or unseen adversarial
strategies.  This  inconsistency  hampers  the
reproducibility of findings and the broader adoption of
robust AML solutions(Sauka et al., 2022). Moreover,
one of the primary challenges in developing
standardized benchmarks is the dynamic and evolving
nature of adversarial attacks. Adversaries continually
adapt their techniques, rendering static evaluation
criteria obsolete (Wang et al., 2019). For instance, while
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gradient-based attacks like FGSM and PGD dominated
early AML research, recent studies have highlighted the
rise of more advanced technigues, such as query-based
and generative adversarial network (GAN)-powered
attacks (Huang et al., 2011). Yan et al. (2019) noted that
most existing benchmarks fail to account for the
diversity and complexity of these emerging threats,
leading to an incomplete assessment of defense
mechanisms. Consequently, there is a growing need for
dynamic and adaptable benchmarks that reflect the real-
world adversarial landscape (McClintick et al., 2022).
Another challenge lies in the selection of representative
datasets for evaluating AML defenses. Many studies
rely on widely used datasets, such as MNIST, CIFAR-
10, and ImageNet, which may not accurately reflect the
complexities of real-world network  security
applications (Pawlicki et al., 2020). Menéndez et al.
(2019) argued that the reliance on these datasets leads
to over-optimized defenses tailored to specific data
distributions, potentially neglecting critical
vulnerabilities in other domains. Furthermore, Jia and
Liang (2017) highlighted that datasets for network
security applications, such as intrusion detection or
malware classification, often lack adversarial examples,
further complicating the evaluation process. To address
these gaps, researchers have called for the creation of
domain-specific benchmarks that incorporate diverse
datasets and realistic adversarial scenarios.Moreover,
the absence of unified performance metrics further
exacerbates the benchmarking challenges in AML
defense evaluation. Metrics such as accuracy,
robustness, and computational efficiency are often
reported independently, without considering their trade-
offs (Carlini & Wagner, 2017). For example, a defense
mechanism that improves robustness against
adversarial attacks may incur significant computational
overhead, rendering it impractical for real-time
applications (Chen et al., 2017). Lecuyer et al. (2019)
proposed that  multi-dimensional evaluation
frameworks incorporating metrics for robustness,
scalability, and efficiency could provide a more holistic
assessment of AML defenses. However, implementing
such frameworks requires collaboration among
researchers, practitioners, and standardization bodies to
define and adopt universally accepted evaluation
practices (Wang et al., 2019).

Scalability and Real-Time Performance

The scalability of adversarial machine learning (AML)
defenses is a significant challenge, particularly as
network security applications require systems capable

of handling high volumes of data in real time. Many
existing defenses, such as adversarial training, are
computationally intensive and struggle to scale
effectively in dynamic environments (Duddu, 2018).
For instance, generating adversarial examples during
training for large datasets or complex models can be
prohibitively  resource-intensive,  limiting their
practicality in enterprise-level applications (Madry et
al., 2017). Additionally, Kumar et al. (2020) noted that
defenses designed for specific adversarial scenarios
often fail to generalize across different attack types or
domains, further complicating their scalability. As
network environments become increasingly dynamic
and data-intensive, the need for lightweight, adaptable,
and scalable AML defenses has become paramount.
Real-time performance is another critical factor in the
effectiveness of AML defenses, particularly for
applications like intrusion detection and fraud
prevention, where immediate responses are essential.
However, many defenses, including preprocessing
techniques and robust model designs, incur significant
latency when applied to large-scale data streams (Madry
et al., 2017). For example, input transformations such
as feature denoising and dimensionality reduction
require additional computational steps, which can delay
detection and response times (Biggio & Roli, 2018).
Brown et al. (2021) emphasized the importance of
developing real-time AML solutions that can maintain
high detection accuracy without compromising speed.
Techniques such as approximate adversarial detection
and lightweight model architectures have shown
promise in reducing latency, but their effectiveness
against sophisticated attacks remains underexplored.
The dynamic nature of network environments presents
unique challenges to AML defenses, particularly in
maintaining performance as network conditions and
attack vectors evolve. Ring et al. (2019) highlighted that
static defenses often fail to adapt to new threats, leaving
systems vulnerable to emerging adversarial techniques.
To address this, researchers have proposed adaptive
defense mechanisms that dynamically adjust their
parameters based on real-time threat assessments
(Duddu, 2018). For instance, systems that integrate
adversarial training with real-time monitoring and
anomaly detection have demonstrated improved
resilience against evolving attack strategies (Malik et
al., 2024). However, the complexity of implementing
such adaptive systems at scale remains a significant
barrier, requiring further research into optimizing their
efficiency and robustness in operational settings.
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Emerging technologies, such as federated learning and
edge computing, offer potential solutions for improving
the scalability and real-time performance of AML
defenses. Federated learning enables distributed
training of models across multiple devices, reducing the
computational burden on centralized systems and
improving scalability (Zhang et al., 2021). Similarly,
edge computing allows preprocessing and initial threat
detection to occur closer to the data source, reducing
latency and enhancing real-time response capabilities
(Shiravi et al., 2012). While these approaches show
promise, integrating them with existing AML defenses
presents new challenges, including ensuring data
privacy, maintaining synchronization across distributed
nodes, and addressing resource constraints on edge
devices (Zhang et al., 2021)..

2.5 Research Gaps

The current landscape of adversarial machine learning
(AML) defenses reveals significant limitations in
existing solutions, highlighting the urgent need for
generalized mechanisms (Bak et al.,, 2022). Many
defenses are tailored to specific attack types or datasets,
making them ineffective against unseen or evolving
threats (Mahloujifar et al., 2022). For instance,
adversarial training improves robustness against
gradient-based attacks like FGSM but struggles to
address adaptive or query-based attacks (Zhao et al.,
2022). Similarly, preprocessing techniques such as
input normalization are highly scenario-dependent,
often degrading performance on benign inputs in
diverse operational settings (Tsai et al., 2009). These
limitations underscore the need for versatile approaches
that can generalize across attack vectors and adapt to the
dynamic nature of adversarial threats. Researchers have
called for the development of hybrid frameworks that
combine multiple defense mechanisms, leveraging their
complementary strengths to create robust, multi-layered
protection systems (Tsai et al., 2009; Zou & Hastie,
2005). Moreover, real-time AML systems are critical
for network security applications, yet many existing
solutions fall short in terms of detection speed and
mitigation capabilities (Balle et al., 2022). Current
defenses often require significant computational
resources, making them impractical for large-scale or
time-sensitive environments (Tsai et al., 2009). For
example, real-time anomaly detection systems are
susceptible to delays caused by complex preprocessing
steps or iterative model updates (Kumar et al., 2020).
To address this gap, researchers recommend the

adoption of lightweight models and approximate
detection techniques that balance accuracy and
efficiency (Duddu, 2018). Additionally, integrating
dynamic threat modeling into AML systems can
enhance real-time adaptability by enabling systems to
adjust their parameters in response to evolving attack
patterns (Wang et al., 2019). These advancements could
significantly improve the operational feasibility of
AML defenses, particularly in critical infrastructure
applications.

Integrating AML with emerging technologies such as
blockchain, Internet of Things (loT), and artificial
intelligence (Al) presents a promising avenue for
enhancing  defense  capabilities. ~ Blockchain’s
decentralized and tamper-resistant nature can provide
secure logging and verification mechanisms for AML
systems, mitigating risks associated with data poisoning
and model tampering (Watkins et al., 2024). loT-
enabled devices, equipped with real-time data
collection and processing capabilities, can improve the
detection of adversarial activity in distributed network
environments (Wang et al., 2019). Moreover, advances
in Al, including generative adversarial networks
(GANSs), can be leveraged to simulate adversarial
attacks, enabling the development of more resilient
models (Homer et al., 2008). However, integrating
these technologies poses challenges such as ensuring
interoperability, maintaining data privacy, and
addressing resource constraints on edge devices (Rigaki
& Garcia, 2023). Furthermore, the need for a
collaborative and interdisciplinary approach is
increasingly evident in addressing the research gaps in
AML. While technical innovations are critical, effective
implementation also requires input from policymakers,
industry practitioners, and researchers from diverse
fields (Balle et al., 2022). Establishing standardized
evaluation frameworks and benchmarks can facilitate
collaboration, ensuring that AML defenses are
rigorously tested and widely applicable (Viegas et al.,
2017). Furthermore, fostering partnerships between
academia and industry can accelerate the translation of
research findings into real-world solutions (Madry et
al., 2017). By addressing these gaps and fostering a
collaborative research ecosystem, the field can advance
toward more secure and adaptive AML systems capable
of countering the growing sophistication of adversarial
threats.
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Table 1: identified Research gap for this study

Research Gap Key Points References

Need for Defenses tailored to specific attack types are ineffective Moustafa and Slay (2015;
Generalized against unseen threats. Hybrid frameworks combining Sun et al.  (2020);
Defense multiple mechanisms are needed for versatility and Vinayakumar et al. (2019)
Mechanisms robustness.

Advancing Real- Current defenses lack speed and scalability for real-time Gubbi et al. (2013)

Time AML applications. Lightweight models and dynamic threat

Systems modeling are recommended to improve feasibility in

critical infrastructure.
Integrating AML
with Emerging
Technologies

constraints.
Collaborative and
Interdisciplinary
Approaches

Emerging technologies like blockchain, 10T, and Al offer
opportunities for enhanced AML defenses but face
challenges in interoperability, data privacy, and resource

Standardized evaluation frameworks and collaboration
between academia, industry, and policymakers are essential
for translating research into practical solutions.

Gubbi et al. (2013)

Abdelaty et al. (2021);
Muneeswaran (2019;
Wierstra et al. (2008)

3 METHOD

This study adhered to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA)
guidelines, which provided a structured framework for
conducting a systematic, transparent, and rigorous
review process. The methodology involved several
clearly defined steps, including article identification,
screening, eligibility assessment, and inclusion, as
outlined below.

3.1 Article Identification

The article identification process began with an
extensive search across multiple scholarly databases,
including IEEE Xplore, PubMed, SpringerLink, and
Scopus. Keywords such as "adversarial machine
learning,” "network security," "adversarial attacks,"
"AML defenses," and related terms were used to capture
a comprehensive range of studies. Boolean operators
like AND, OR, and NOT were utilized to refine the
search queries and combine multiple terms effectively.
The search was limited to peer-reviewed articles
published between 2015 and 2023 to ensure the
inclusion of the most relevant and up-to-date research.
A total of 1,237 articles were initially retrieved from
this step.

3.2 Screening Process

The screening process involved removing duplicates
and evaluating the relevance of the identified articles.
After duplicates were excluded, 952 articles remained.
The titles and abstracts of these articles were reviewed
to ensure they aligned with the scope of this study.
Articles focusing solely on non-ML-based security

techniques or unrelated fields were excluded. At this
stage, 531 articles were deemed relevant and carried
forward for a more detailed assessment.

3.3 Eligibility Assessment

The eligibility assessment phase involved a thorough
review of the full texts of the 531 articles. A set of
inclusion and exclusion criteria was applied to ensure
that only studies addressing adversarial attacks, defense
mechanisms, or their impact on network security were
retained. Studies were excluded if they:

Did not explicitly mention adversarial attacks or
machine learning.

Were non-empirical, opinion pieces, or lacked
experimental validation.
Focused on unrelated domains, such as image

classification, without connecting to network security.
After this detailed review, 157 articles met the
eligibility criteria and were included in the final dataset
for analysis.

3.4 Inclusion and Data Extraction

The final 157 articles were reviewed in-depth for
extracting data relevant to the research questions. A data
extraction form was used to systematically collect
information on study objectives, methodologies, types
of adversarial attacks and defenses discussed, and key
findings. Articles were categorized into thematic areas,
such as evasion attacks, poisoning attacks, model
extraction, and defense mechanisms like adversarial
training, preprocessing, and robust model design. These
thematic categories served as the basis for synthesizing
the findings and identifying research gaps.

Final Inclusion
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To ensure the quality and reliability of the selected
studies, each article was evaluated using a quality
appraisal ~ checklist. ~ The  checklist  assessed
methodological rigor, clarity of objectives, validity of
results, and relevance to adversarial machine learning
and network security. Studies with low methodological
quality or inadequate reporting were excluded during
this phase, leaving 135 high-quality articles for final
synthesis.

4 FINDINGS

The systematic review highlighted that evasion attacks
are the most extensively researched adversarial threat
vector, with 65 of the 135 reviewed articles addressing
their mechanisms, consequences, and defense
strategies. Evasion attacks exploit vulnerabilities during
the inference phase of machine learning models,
enabling adversaries to bypass security systems such as
intrusion detection and malware classifiers. Across
these articles, with a collective citation count exceeding
4,000, the findings consistently demonstrate the
growing sophistication of evasion techniques, including
gradient-based attacks, black-box strategies, and query-
based methods. Researchers noted that evasion attacks
often exploit predictable patterns in static defenses,
rendering traditional security models ineffective in
dynamic network environments. Moreover, 30 of these
articles provided case studies demonstrating how these
attacks can lead to undetected breaches in real-world
scenarios, highlighting the pressing need for adaptive
and proactive defense mechanisms.

Poisoning attacks were identified as the second most
extensively discussed adversarial technique, with 45
reviewed articles and approximately 3,200 total
citations emphasizing their impact on training datasets
and model performance. These attacks manipulate the
training phase by injecting malicious data into the
dataset, effectively degrading the accuracy and
reliability of machine learning models. Among the
articles, 28 focused on specific case studies of poisoning
attacks in collaborative and federated learning
frameworks, where data is aggregated from multiple,
often untrusted, sources. These studies revealed
significant security breaches, including compromised
anomaly detection systems and faulty predictive models
in critical applications like fraud detection.
Furthermore, over 60% of these articles underlined the
challenges of detecting poisoning attacks, especially in
large-scale datasets, thereby underscoring the
importance of developing advanced data validation
protocols and anomaly detection systems to mitigate
these risks effectively.

Model extraction attacks emerged as another significant
threat, with 30 reviewed articles and a combined
citation count of 2,500 highlighting their implications
for machine learning and network security. These
attacks focus on reverse-engineering or replicating
proprietary machine learning models through
systematic queries, exposing sensitive training data and
intellectual property. The reviewed studies emphasized
the detrimental impact of model extraction on
commercial applications, where proprietary algorithms
are core assets. In 15 articles, researchers detailed
scenarios in which extracted models were exploited to

Figure 5: Sumamry of the findings
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generate targeted adversarial examples, amplifying
vulnerabilities across the system. Additionally, the
findings revealed that model extraction attacks
disproportionately affect systems that expose machine
learning APIs, such as fraud detection platforms and
user authentication systems. These insights point to an
urgent need for secure API designs, including rate
limiting and differential privacy techniques, to
safeguard against unauthorized access and model theft.
In analyzing defense mechanisms, adversarial training
emerged as the most frequently proposed solution,
discussed in 55 reviewed articles with over 5,000
citations. This method improves model robustness by
exposing it to adversarial examples during the training
phase, enabling it to recognize and resist malicious
inputs. However, the review highlighted significant
challenges in scalability, as adversarial training often
requires substantial computational resources, making it
unsuitable for real-time or large-scale applications.
Furthermore, approximately 60% of the articles
emphasized that adversarial training alone is
insufficient, particularly against adaptive attacks that
evolve to bypass defenses. Twenty highly cited articles
also focused on hybrid frameworks that integrate
adversarial training with preprocessing techniques, such
as feature denoising or input normalization, and
architectural innovations like gradient obfuscation.
These hybrid approaches were noted for their potential
to address the limitations of adversarial training, though
their computational cost remains a barrier to widespread
adoption in operational environments. Emerging
defense strategies that integrate adversarial machine
learning with advanced technologies, such as
blockchain, Internet of Things (loT), and artificial
intelligence (Al), represent a promising direction, as
highlighted in 25 reviewed articles with approximately
2,800 citations. These studies demonstrated that
blockchain technology can enhance AML defenses by
providing decentralized, tamper-proof mechanisms for
logging and verification, which mitigate risks
associated with data poisoning and model tampering.
loT-enabled devices, with their ability to collect and
process data in real time, were noted for improving the
detection and response to adversarial activity in
distributed environments. Similarly, Al advancements,
particularly generative adversarial networks (GANS),
were recognized for their ability to simulate diverse
adversarial scenarios, enabling the development of
more resilient models. However, only 10 articles
addressed practical challenges in implementing these

technologies, such as ensuring system interoperability,
maintaining data privacy, and addressing resource
constraints on edge devices. These findings underscore
the potential of integrating AML with emerging
technologies while emphasizing the need for further
research to overcome the associated technical and
operational barriers.

5 DISCUSSION

The findings of this study provide critical insights into
adversarial machine learning (AML) in network
security and reveal a growing emphasis on
understanding and mitigating adversarial threats. The
prevalence of research on evasion attacks aligns with
earlier studies that identified these as the most common
and effective forms of adversarial attacks. For instance,
Duddu (2018) demonstrated that gradient-based attacks,
such as the Fast Gradient Sign Method (FGSM), exploit
predictable decision boundaries in machine learning
models, rendering traditional defenses inadequate. This
study extends those findings by highlighting how
evasion attacks have evolved in sophistication,
incorporating black-box and query-based techniques
that challenge even advanced detection systems. While
earlier studies primarily focused on small-scale or static
environments, this review identifies a pressing need for
adaptive and scalable defenses that can counteract the

dynamic nature of modern adversarial threats,
particularly in real-world applications.
In contrast, poisoning attacks have received

comparatively less attention, despite their severe
implications for training-phase vulnerabilities. Earlier
research by Yan et al. (2019) demonstrated the
feasibility of poisoning attacks in corrupting datasets to
degrade model accuracy significantly. This study
corroborates those findings, showing that poisoning
attacks remain a critical challenge in environments such
as federated learning and collaborative data-sharing
frameworks. However, the present review adds to the
literature by emphasizing the difficulty in detecting
such attacks in large-scale datasets, particularly when
adversarial inputs are designed to mimic benign data.
Unlike previous studies, which often proposed isolated
data validation techniques, the findings of this review
underscore  the  importance  of  integrating
comprehensive anomaly detection systems and data
provenance mechanisms to mitigate poisoning risks
effectively.
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The increasing focus on model extraction attacks in this
review reflects a shift in research priorities toward
intellectual property protection and system integrity.
Earlier studies, such as those by Lowd and Meek
(2005), explored the feasibility of extracting model
parameters through systematic querying of ML APIs,
highlighting the risks associated with model theft. This
study builds on those findings by demonstrating how
extracted models can serve as tools for generating more
effective adversarial examples, compounding the
vulnerabilities of the original system. Additionally, this
review reveals that while API-level defenses, such as
rate limiting and query logging, have been suggested,
their implementation remains inconsistent across
applications. Unlike prior research, which often viewed
model extraction attacks as a niche threat, this study
emphasizes their broader implications for commercial
and proprietary ML systems, calling for a more
comprehensive approach to securing model access.

The findings on defense mechanisms, particularly
adversarial training, offer a nuanced perspective on
their strengths and limitations. Earlier studies, such as
Papernot et al. (2016), highlighted adversarial training
as a promising solution for improving model robustness
against specific attack types. This review expands on
those findings by noting the scalability challenges
associated with adversarial training, particularly in real-
time applications requiring high computational
efficiency. Furthermore, the emphasis on hybrid
frameworks combining adversarial training with
preprocessing techniques and robust model designs
aligns with recent research advocating for multi-layered
defense strategies (Venkatesan et al., 2021). However,
this review differs by highlighting the limited
generalizability of these approaches, particularly
against adaptive adversarial techniques. These insights
suggest that while adversarial training remains a
cornerstone of AML defenses, it must be supplemented
by scalable and versatile solutions to address the diverse
and evolving landscape of adversarial threats. Finally,
the integration of AML with emerging technologies
such as blockchain, 10T, and Al presents a promising
frontier for enhancing defense mechanisms. Earlier
studies, such as those by Ahmad et al. (2020), explored
the potential of blockchain for secure data management,
while others demonstrated the utility of 10T for real-
time monitoring in distributed systems (Alhajjar et al.,
2021). This review confirms the potential of these
technologies but also identifies  significant
implementation challenges, such as interoperability and

data privacy concerns. Moreover, the application of
generative adversarial networks (GANS) to simulate
adversarial scenarios is consistent with findings by
Grosse et al. (2023) but remains underexplored in
practical deployments. This study contributes to the
literature by emphasizing the need for interdisciplinary
research to address these challenges and leverage the
full potential of emerging technologies in AML
defenses. By comparing these findings with earlier
studies, it becomes evident that while substantial
progress has been made, critical gaps remain in
advancing scalable, real-time, and technologically
integrated AML systems for network security.

6 CONCLUSION

This systematic review highlights the evolving
landscape of adversarial machine learning (AML) in
network security, emphasizing the sophistication of
adversarial threats and the urgent need for robust and
scalable defense mechanisms. The findings demonstrate
that evasion, poisoning, and model extraction attacks
pose significant challenges to the integrity, privacy, and
functionality of machine learning systems, particularly
in dynamic and large-scale network environments.
While advancements in adversarial training,
preprocessing techniques, and robust model designs
have shown promise, their limitations in scalability and
generalizability underscore the need for hybrid
frameworks and adaptive defenses. Emerging
technologies, such as blockchain, 10T, and Al, present
transformative opportunities for enhancing AML
defenses, though their integration faces technical and
operational barriers. This review also identifies the lack
of standardized evaluation frameworks and
interdisciplinary collaboration as critical gaps that
hinder the practical implementation of AML solutions.
Addressing these challenges requires a multifaceted
approach that combines technical innovation, policy
support, and industry-academic partnerships to develop
versatile, real-time, and future-ready defenses against
adversarial threats in network security.
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