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1 INTRODUCTION 

The rapid integration of machine learning (ML) into 

network security systems has revolutionized the 

detection and mitigation of cyber threats, enabling 

advanced capabilities in areas like intrusion detection, 

spam filtering, and anomaly detection (Grosse et al., 

2023). However, this integration has also exposed ML 

models to a new category of risks—adversarial 

attacks—that exploit the inherent vulnerabilities in 

these systems (Zhang et al., 2019). Adversarial Machine 

Learning (AML) involves techniques used by malicious 

actors to deceive or compromise ML models by 

manipulating inputs, leading to incorrect outputs or 

exposing sensitive information (Raza et al., 2024). As 

ML becomes a foundational component in safeguarding 
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critical infrastructure, understanding how adversaries 

exploit these systems is crucial. For example, studies 

have revealed that even well-trained ML models can be 

deceived with imperceptible perturbations to input data, 

making the systems vulnerable to significant breaches 

(Liu et al., 2018). The dual-edged nature of ML’s 

deployment in network security highlights the urgency 

of comprehensively addressing adversarial 

threats(Ahmad et al., 2020). 

Adversarial attacks in AML can be categorized into 

evasion, poisoning, and model extraction attacks, each 

targeting different stages of the ML pipeline (Calleja et 

al., 2018). Evasion attacks manipulate input data during 

inference, enabling adversaries to bypass detection 

systems. Poisoning attacks, by contrast, compromise 

the integrity of training data, leading to biased or 

dysfunctional models (Watkins et al., 2024). Model 

extraction attacks, which aim to replicate a model’s 

functionality or access sensitive training data, represent 

another sophisticated threat vector (Tibshirani, 1996). 

These attacks are particularly concerning in scenarios 

involving public-facing ML applications, where access 

to the model's outputs is easier. For instance, 

Olowononi et al. (2021) demonstrated that black-box 

attacks could reverse-engineer models with minimal 

queries, underlining the pressing need for robust 

countermeasures. The diversity and sophistication of 

these attack strategies underscore the growing necessity 

for a multi-faceted approach to AML in network 

security. To combat adversarial threats, researchers 

have proposed a range of defense mechanisms, 

including adversarial training, preprocessing 

techniques, and the development of robust model 

architectures. Adversarial training involves augmenting 

datasets with adversarial examples during the training 

phase, improving the model’s ability to recognize and 

resist malicious inputs (Homer et al., 2008). Input 

preprocessing, such as feature denoising and 

normalization, offers another layer of protection by 

mitigating the impact of adversarial perturbations 

before the data reaches the model (Venkatesan et al., 

2021). Additionally, advanced techniques like 

defensive distillation and gradient obfuscation aim to 

enhance model robustness by modifying the learning 

process or concealing gradient information from 

attackers (Tibshirani, 1996). However, the effectiveness 

of these defenses varies significantly across attack 

types, and many solutions face scalability challenges, 

particularly in real-time applications (Mazumder et al., 

2024). Consequently, developing generalized and 

scalable defense mechanisms remains a critical area of 

research. 

The broader implications of AML in network security 

extend to ethical, legal, and operational dimensions. As 

ML applications expand into sensitive domains such as 

finance, healthcare, and national defense, adversarial 

attacks can lead to catastrophic consequences, including 

financial losses, breaches of personal data, and 

compromised public safety (Ahmad et al., 2020; Alam 

et al., 2024). For instance, Zhao et al. (2022) 

demonstrated that adversarial examples could bypass 

ML-based image recognition systems in physical-world 

settings, raising concerns about the reliability of these 

models in high-stakes environments. Furthermore, the 

lack of standardized benchmarks for evaluating the 

performance of defense mechanisms complicates 

Figure 1: Adversarial Robustness Toolbox (ART) 
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efforts to measure their efficacy and foster innovation 

(Hasan et al., 2024). Addressing these challenges 

requires a holistic approach that not only strengthens 

technical defenses but also considers the socio-technical 

context in which AML systems operate (Islam et al., 

2024). The primary objective of this systematic review 

is to provide a comprehensive analysis of adversarial 

machine learning (AML) within the context of network 

security, with a specific focus on identifying and 

categorizing threat vectors and evaluating defense 

mechanisms. By employing the PRISMA methodology, 

this study seeks to synthesize existing research to 

elucidate the nature and scope of adversarial attacks, 

such as evasion, poisoning, and model extraction, and 

their impact on ML-driven network security systems. 

Furthermore, the review aims to critically examine the 

effectiveness of various defense mechanisms, including 

adversarial training, input preprocessing, and robust 

model design, to determine their strengths, limitations, 

and applicability in real-world scenarios. An additional 

objective is to identify critical gaps in the current body 

of knowledge, such as the absence of standardized 

benchmarks for defense evaluation and the limited 

scalability of existing solutions. Through these 

objectives, this study aspires to contribute to the 

development of more resilient and adaptive AML 

frameworks, facilitating the secure deployment of ML 

in network security applications. 

2 LITERATURE REVIEW 

The field of adversarial machine learning (AML) in 

network security has garnered significant academic and 

industry attention due to the increasing adoption of 

machine learning (ML) models in security-critical 

applications. The literature on AML is rich with studies 

that explore adversarial attacks, defense mechanisms, 

and their implications for network security. This section 

systematically reviews the existing body of knowledge, 

providing a detailed analysis of key concepts, 

methodologies, and findings. By synthesizing insights 

from recent studies, this literature review aims to 

categorize adversarial threat vectors, evaluate defense 

mechanisms, and highlight gaps in the research 

landscape. The review is structured to offer a thematic 

exploration of adversarial attacks and their technical 

underpinnings, followed by an evaluation of existing 

defenses and their limitations. It concludes with a 

discussion of unresolved challenges and future research 

directions, providing a foundation for advancing AML 

in network security. 

2.1 Adversarial Machine Learning in Network 

Security 

Adversarial Machine Learning (AML) has emerged as 

a critical field in the intersection of machine learning 

(ML) and network security, addressing the 

vulnerabilities of ML systems to adversarial attacks 

(Homer et al., 2008). These attacks exploit the inherent 

weaknesses of ML models, such as their reliance on 

training data and susceptibility to perturbations, to 

compromise their functionality (Alam, 2024). In 

network security, ML models are commonly used for 

intrusion detection, anomaly detection, and malware 

classification. However, adversarial techniques, 

including evasion, poisoning, and model extraction 

attacks, threaten the reliability of these applications 

(Mosleuzzaman  et al., 2024). For example, evasion 

attacks bypass anomaly detection systems by subtly 

altering input features, while poisoning attacks corrupt 

the training datasets, leading to degraded model 

performance (Mosleuzzaman et al., 2024). As ML 

becomes increasingly integrated into critical 

infrastructure, understanding these vulnerabilities and 

their implications is essential to ensure the secure 

deployment of these systems (Mosleuzzaman et al., 

2024). 

The challenges posed by adversarial attacks on ML 

systems are multifaceted, extending from technical 

limitations to ethical and operational risks (Nandi et al., 

2024). Technically, ML models are often treated as 

black boxes, which makes it challenging to identify and 

address their vulnerabilities before deployment 

(Rahaman et al., 2024). Gradient-based attacks, such as 

the Fast Gradient Sign Method (FGSM), exploit these 

black-box characteristics to craft adversarial examples 

that mislead the model (Rahman, 2024). Furthermore, 

poisoning attacks compromise the training phase, 

embedding vulnerabilities that attackers can later 

exploit (Rahman, 2024). Operationally, adversarial 

attacks pose significant risks to privacy and data 

integrity. For instance, model extraction attacks can 

reveal sensitive information about the training dataset 

or the underlying architecture of the model (Rahman, 

2024). These challenges are further exacerbated by the 

lack of standardized benchmarks to evaluate adversarial 

defenses, making it difficult to compare the 

effectiveness of different solutions (Rahman et al. 

2024). Addressing these vulnerabilities is imperative to 
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ensure the secure deployment of ML systems in 

network security applications. One of the most 

researched solutions is adversarial training, which 

involves exposing models to adversarial examples 

during training to improve their robustness (Rahman et 

al., 2024). Input preprocessing techniques, such as 

feature denoising and input normalization, are also 

widely explored as first-line defenses against 

adversarial attacks (Shamsuzzaman et al., 2024). 

Additionally, robust model design approaches, 

including defensive distillation and gradient 

obfuscation, have shown promise in enhancing model 

resistance to gradient-based attacks (Tsai et al., 2009; 

Zou & Hastie, 2005). However, these defenses have 

limitations, including reduced generalizability and 

scalability in real-time applications (Shorna et al., 

2024). Recent studies emphasize the importance of 

combining multiple defense mechanisms to create more 

resilient systems (Shorna et al., 2024). Beyond technical 

defenses, ensuring the secure deployment of ML 

systems requires a holistic approach that integrates 

technical, operational, and ethical considerations (Sohel 

et al., 2024). For example, employing secure data 

collection and labeling practices can reduce the risk of 

poisoning attacks, while ongoing monitoring and 

validation of deployed models can help detect 

adversarial activity in real-time (Sultana & Aktar, 

2024). Furthermore, advancements in explainable AI 

(XAI) can provide greater transparency into model 

decision-making, enabling security teams to identify 

potential vulnerabilities proactively (Uddin, 2024).  

2.2 Adversarial Threat Vectors 

Adversarial attacks on machine learning (ML) systems 

pose significant challenges in network security, with 

evasion attacks being one of the most prevalent and 

studied threats. These attacks manipulate input data 

during inference, subtly altering its features to deceive 

the ML model without triggering detection mechanisms 

(Uddin & Hossan, 2024). For instance, adversarial 

examples crafted using gradient-based techniques, such 

as the Fast Gradient Sign Method (FGSM), exploit the 

vulnerabilities in model gradients to bypass intrusion 

detection systems (Homoliak et al., 2019). Case studies 

highlight the susceptibility of network intrusion 

detection systems (NIDS) to evasion attacks, where 

adversaries modify packet headers or payloads to elude 

detection algorithms (Lecuyer et al., 2019; Papernot et 

al., 2016). For example, Colbaugh and Glass (2013) 

demonstrated how adversarial perturbations in network 

traffic data could evade deep learning-based intrusion 

detection models with high accuracy. These findings 

underscore the need for improved model robustness and 

real-time defenses to counter evasion threats 

effectively. Poisoning attacks present a distinct 

challenge by targeting the training phase of ML 

systems. These attacks involve introducing malicious 

data into the training dataset, corrupting the model’s 

ability to generalize and perform accurately (Lowd & 

Meek, 2005). Poisoning methods often exploit the over-

reliance of ML models on clean and representative data, 

injecting manipulated samples that bias the model’s 

decision-making process (Kumar et al., 2020). Real-

world examples, such as the backdoor attacks on email 

spam filters, demonstrate the severe implications of 

poisoning, where specific trigger patterns in training 

data cause the model to misclassify harmful inputs 

(Malik et al., 2024). Additionally, Carlini and Wagner 

(2018) highlighted how poisoning attacks could render 

cybersecurity systems ineffective, especially in 

collaborative or federated learning scenarios where data 

is sourced from multiple untrusted entities. Addressing 

these threats requires robust data validation protocols 

and mechanisms to detect anomalies in training 

datasets. 

Model extraction attacks represent another critical 

vector, wherein adversaries aim to replicate or steal the 

functionality of an ML model by querying it 

systematically. These attacks exploit the input-output 

relationship of ML models to reconstruct their internal 

parameters, effectively reverse-engineering the system 

(Balle et al., 2022). For instance, studies have shown 

how adversaries can replicate proprietary deep learning 

models used in network security by leveraging only a 

limited number of queries, exposing trade secrets and 

intellectual property (Papernot et al., 2016). The 

implications of model extraction extend beyond model 

theft to include the potential misuse of stolen models for 

evasion or poisoning attacks (Wang et al., 2019). Such 

risks highlight the need for secure API designs and 

techniques like query rate limiting and differential 

privacy to safeguard ML models from unauthorized 

access and reverse engineering. Moreover, Hybrid and 

emerging attack strategies further complicate the 

adversarial landscape by combining multiple threat 

vectors to enhance their effectiveness. Hybrid attacks, 

such as those integrating evasion and poisoning 

techniques, simultaneously compromise training data 

and inference phases, creating more robust and 

undetectable adversarial examples (Malik et al., 2024). 
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Emerging threats, including attacks leveraging 

generative adversarial networks (GANs), present novel 

challenges by automating the generation of 

sophisticated adversarial samples (Madry et al., 2017). 

For example, GAN-based techniques have been used to 

craft perturbations that evade not only detection 

systems but also human scrutiny, increasing the risk of 

undetected breaches in critical applications (Biggio & 

Roli, 2018). As adversaries continue to innovate, the 

need for proactive research into hybrid and emerging 

threats remains urgent, emphasizing the importance of 

adaptive defenses capable of addressing complex and 

evolving attack strategies. 

2.3 Defense Mechanisms Against Adversarial 

Attacks 

Adversarial training is one of the most widely studied 

defense mechanisms against adversarial attacks, 

focusing on improving model robustness by 

augmenting training datasets with adversarial examples. 

This method aims to expose the model to potential 

threats during the training phase, enabling it to learn 

patterns and resist adversarial perturbations (Marino et 

al., 2018). Pierazzi et al. (2020) demonstrated that 

adversarial training could significantly enhance the 

resilience of deep neural networks to gradient-based 

attacks like FGSM and Projected Gradient Descent 

(PGD). However, adversarial training is 

computationally expensive, often requiring substantial 

Figure 2:Classification of Adversarial Machine Learning (AML) attacks 

 

 

Figure 3: Defense Mechanisms Against Adversarial Attacks 
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resources to generate adversarial examples and retrain 

models (Colbaugh & Glass, 2013). Additionally, while 

it can increase robustness against specific attack types, 

its generalizability across diverse adversarial 

techniques remains limited (Wang et al., 2019). Input 

preprocessing techniques offer another layer of defense 

by mitigating the impact of adversarial perturbations 

before data is fed into the model. These techniques 

include input normalization, feature denoising, and 

dimensionality reduction, which aim to remove 

adversarial noise from the input data (Warzynski & 

Kołaczek, 2018). For example, pixel-wise 

transformations and feature squeezing have been shown 

to reduce the effectiveness of adversarial examples in 

image classification tasks (Kumar et al., 2020). 

Preprocessing methods are particularly effective against 

black-box attacks, where the adversary lacks direct 

access to model parameters (Sharon et al., 2022). 

However, their effectiveness can vary depending on the 

nature of the adversarial attack and the underlying ML 

model. Duddu (2018) emphasized that preprocessing 

techniques might inadvertently degrade model 

performance on benign inputs, highlighting the trade-

offs involved in their application. Comparative studies 

reveal that combining multiple preprocessing methods 

can enhance their overall efficacy, particularly in 

dynamic network environments. 

Robust model design focuses on architectural 

innovations to strengthen ML models against 

adversarial attacks. Techniques such as defensive 

distillation, gradient obfuscation, and adversarial 

feature masking are designed to make it more 

challenging for adversaries to exploit model 

vulnerabilities (Wang et al., 2021). Defensive 

distillation, for instance, modifies the training process 

to reduce the sensitivity of the model to small 

perturbations, effectively countering gradient-based 

attacks (Madry et al., 2017). Gradient obfuscation, on 

the other hand, aims to obscure the gradient information 

required by attackers to generate adversarial examples 

(Colbaugh & Glass, 2013). While these methods show 

promise in enhancing model robustness, studies 

highlight their limitations, such as susceptibility to 

advanced adaptive attacks that bypass these defenses 

(Duddu, 2018). Case studies, such as those analyzing 

robust architectures for intrusion detection systems, 

demonstrate that combining robust design principles 

with other defense mechanisms can provide more 

comprehensive protection. Ensemble defenses leverage 

the diversity of multiple models to increase system 

resilience against adversarial attacks (Warzynski & 

Kołaczek, 2018). By combining the predictions of 

multiple independently trained models, ensemble 

methods reduce the likelihood that a single adversarial 

example will compromise the entire system (Lecuyer et 

al., 2019). This approach is particularly effective in 

scenarios where adversarial attacks target specific 

model architectures or training techniques. Malik et al. 

(2024) demonstrated that ensemble methods 

significantly enhance resilience against black-box and 

transfer attacks, as attackers must craft adversarial 

examples that generalize across multiple models. 

However, ensemble methods also face challenges, such 

as increased computational complexity and the risk of 

correlated vulnerabilities among models (Apruzzese & 

Colajanni, 2018). Evaluations indicate that combining 

ensemble defenses with preprocessing techniques and 

adversarial training can mitigate these challenges, 

providing robust and scalable solutions to adversarial 

threats in network security. 

Adversarial Attacks on Network Security 

The vulnerabilities in network security architectures 

often amplify the risks posed by adversarial machine 

learning (AML) attacks. Many ML-based systems rely 

on fixed and predictable decision-making pipelines, 

which adversaries can exploit to craft targeted attacks 

(Wang et al., 2019). For instance, Kumar et al. (2020) 

identified that the lack of dynamic defenses in 

traditional intrusion detection systems (IDS) creates 

opportunities for adversaries to bypass detection 

mechanisms using evasion attacks. Architectural flaws, 

such as the over-reliance on static thresholds and the 

absence of anomaly detection in critical data paths, 

make these systems particularly susceptible to adaptive 

adversarial techniques (Homoliak et al., 2019). 

Furthermore, Marino et al. (2018) highlighted that the 

exposure of model APIs in network security 

applications, such as fraud detection and malware 

classification, increases the risk of model extraction and 

poisoning attacks. Addressing these vulnerabilities 

requires rethinking architectural designs to incorporate 

dynamic, adaptable, and robust defense mechanisms 

capable of countering evolving adversarial threats 

(Colbaugh & Glass, 2013). Moreover, adversarial 

attacks pose significant implications for user privacy 

and data integrity in network security systems (Kumar 

et al., 2020). Attacks such as model extraction can 

expose sensitive information embedded in training 

datasets, violating user privacy and potentially leading 
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to identity theft or unauthorized access to personal data 

(Sharon et al., 2022). Similarly, poisoning attacks that 

manipulate training datasets can compromise the 

integrity of data-driven decisions, resulting in 

misclassifications that adversely affect end-users (Kim 

et al., 2018). Alotaibi and Rassam (2023) demonstrated 

how adversarial examples could exploit vulnerabilities 

in face recognition systems, enabling unauthorized 

access to secure facilities. Additionally, attacks on 

healthcare systems using adversarial ML have been 

shown to manipulate diagnostic outputs, jeopardizing 

patient safety and trust in these systems (He et al., 

2023). These findings emphasize the need for rigorous 

data validation and monitoring protocols to protect user 

privacy and maintain data integrity in adversarial 

environments. Moreover, the operational and financial 

impacts of adversarial attacks on network security 

systems are both profound and far-reaching. Successful 

adversarial attacks can disrupt critical operations, 

leading to service outages, reputational damage, and 

financial losses (Huang et al., 2011). For example, 

Menéndez et al. (2019) reported that evasion attacks on 

financial transaction monitoring systems resulted in 

undetected fraudulent transactions, causing millions of 

dollars in losses. In another case, Yan et al. (2019) 

illustrated how poisoning attacks on autonomous 

vehicle navigation systems could lead to traffic 

disruptions and accidents, demonstrating the real-world 

operational consequences of AML vulnerabilities. 

Furthermore, McClintick et al. (2022) highlighted the 

financial risks of intellectual property theft through 

model extraction attacks, which enable competitors to 

replicate proprietary algorithms without incurring 

development costs. These case studies underscore the 

critical importance of robust AML defenses to 

safeguard both the operational continuity and financial 

stability of organizations relying on ML-based network 

security systems. The growing sophistication of 

adversarial attacks necessitates a multi-faceted 

approach to mitigate their impact on network security. 

While technical defenses are essential, organizations 

must also address the systemic and procedural 

weaknesses that adversaries exploit (Wang et al., 2019). 

Yan et al. (2019) emphasized the importance of 

integrating adversarial resilience into the design of ML 

models and network architectures to preemptively 

counteract potential threats. Additionally, regular stress 

testing and simulations of adversarial scenarios can help 

organizations identify and address vulnerabilities 

before they are exploited in real-world attacks (Sauka et 

al., 2022). By combining technical advancements with 

proactive operational strategies, organizations can 

reduce the operational, financial, and privacy risks 

posed by adversarial attacks, ensuring a more secure 

network environment. 

2.4 Evaluation of Defense Mechanisms 

The lack of standardized benchmarks for evaluating 

adversarial machine learning (AML) defenses poses a 

significant challenge to advancing the field (Huang et 

al., 2011). Current evaluation frameworks vary widely 

in their methodologies, datasets, and performance 

metrics, making it difficult to compare the effectiveness 

of different defense mechanisms (Yan et al., 2019). For 

example, adversarial training strategies often report 

results based on specific attack types and datasets, 

limiting their generalizability across diverse scenarios 

(Rosenberg et al., 2021). Alhajjar et al. (2021) 

emphasized that without standardized evaluation 

criteria, researchers may inadvertently design defenses 

that perform well only under specific conditions but fail 

against more sophisticated or unseen adversarial 

strategies. This inconsistency hampers the 

reproducibility of findings and the broader adoption of 

robust AML solutions(Sauka et al., 2022). Moreover, 

one of the primary challenges in developing 

standardized benchmarks is the dynamic and evolving 

nature of adversarial attacks. Adversaries continually 

adapt their techniques, rendering static evaluation 

criteria obsolete (Wang et al., 2019). For instance, while 

Figure 4: Adversarial Attacks on Network Security 
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gradient-based attacks like FGSM and PGD dominated 

early AML research, recent studies have highlighted the 

rise of more advanced techniques, such as query-based 

and generative adversarial network (GAN)-powered 

attacks (Huang et al., 2011). Yan et al. (2019) noted that 

most existing benchmarks fail to account for the 

diversity and complexity of these emerging threats, 

leading to an incomplete assessment of defense 

mechanisms. Consequently, there is a growing need for 

dynamic and adaptable benchmarks that reflect the real-

world adversarial landscape (McClintick et al., 2022). 

Another challenge lies in the selection of representative 

datasets for evaluating AML defenses. Many studies 

rely on widely used datasets, such as MNIST, CIFAR-

10, and ImageNet, which may not accurately reflect the 

complexities of real-world network security 

applications (Pawlicki et al., 2020). Menéndez et al. 

(2019) argued that the reliance on these datasets leads 

to over-optimized defenses tailored to specific data 

distributions, potentially neglecting critical 

vulnerabilities in other domains. Furthermore, Jia and 

Liang (2017) highlighted that datasets for network 

security applications, such as intrusion detection or 

malware classification, often lack adversarial examples, 

further complicating the evaluation process. To address 

these gaps, researchers have called for the creation of 

domain-specific benchmarks that incorporate diverse 

datasets and realistic adversarial scenarios.Moreover, 

the absence of unified performance metrics further 

exacerbates the benchmarking challenges in AML 

defense evaluation. Metrics such as accuracy, 

robustness, and computational efficiency are often 

reported independently, without considering their trade-

offs (Carlini & Wagner, 2017). For example, a defense 

mechanism that improves robustness against 

adversarial attacks may incur significant computational 

overhead, rendering it impractical for real-time 

applications (Chen et al., 2017). Lecuyer et al. (2019) 

proposed that multi-dimensional evaluation 

frameworks incorporating metrics for robustness, 

scalability, and efficiency could provide a more holistic 

assessment of AML defenses. However, implementing 

such frameworks requires collaboration among 

researchers, practitioners, and standardization bodies to 

define and adopt universally accepted evaluation 

practices (Wang et al., 2019). 

Scalability and Real-Time Performance 

The scalability of adversarial machine learning (AML) 

defenses is a significant challenge, particularly as 

network security applications require systems capable 

of handling high volumes of data in real time. Many 

existing defenses, such as adversarial training, are 

computationally intensive and struggle to scale 

effectively in dynamic environments (Duddu, 2018). 

For instance, generating adversarial examples during 

training for large datasets or complex models can be 

prohibitively resource-intensive, limiting their 

practicality in enterprise-level applications (Madry et 

al., 2017). Additionally, Kumar et al. (2020) noted that 

defenses designed for specific adversarial scenarios 

often fail to generalize across different attack types or 

domains, further complicating their scalability. As 

network environments become increasingly dynamic 

and data-intensive, the need for lightweight, adaptable, 

and scalable AML defenses has become paramount. 

Real-time performance is another critical factor in the 

effectiveness of AML defenses, particularly for 

applications like intrusion detection and fraud 

prevention, where immediate responses are essential. 

However, many defenses, including preprocessing 

techniques and robust model designs, incur significant 

latency when applied to large-scale data streams (Madry 

et al., 2017). For example, input transformations such 

as feature denoising and dimensionality reduction 

require additional computational steps, which can delay 

detection and response times (Biggio & Roli, 2018). 

Brown et al. (2021) emphasized the importance of 

developing real-time AML solutions that can maintain 

high detection accuracy without compromising speed. 

Techniques such as approximate adversarial detection 

and lightweight model architectures have shown 

promise in reducing latency, but their effectiveness 

against sophisticated attacks remains underexplored. 

The dynamic nature of network environments presents 

unique challenges to AML defenses, particularly in 

maintaining performance as network conditions and 

attack vectors evolve. Ring et al. (2019) highlighted that 

static defenses often fail to adapt to new threats, leaving 

systems vulnerable to emerging adversarial techniques. 

To address this, researchers have proposed adaptive 

defense mechanisms that dynamically adjust their 

parameters based on real-time threat assessments 

(Duddu, 2018). For instance, systems that integrate 

adversarial training with real-time monitoring and 

anomaly detection have demonstrated improved 

resilience against evolving attack strategies (Malik et 

al., 2024). However, the complexity of implementing 

such adaptive systems at scale remains a significant 

barrier, requiring further research into optimizing their 

efficiency and robustness in operational settings. 
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Emerging technologies, such as federated learning and 

edge computing, offer potential solutions for improving 

the scalability and real-time performance of AML 

defenses. Federated learning enables distributed 

training of models across multiple devices, reducing the 

computational burden on centralized systems and 

improving scalability (Zhang et al., 2021). Similarly, 

edge computing allows preprocessing and initial threat 

detection to occur closer to the data source, reducing 

latency and enhancing real-time response capabilities 

(Shiravi et al., 2012). While these approaches show 

promise, integrating them with existing AML defenses 

presents new challenges, including ensuring data 

privacy, maintaining synchronization across distributed 

nodes, and addressing resource constraints on edge 

devices (Zhang et al., 2021).. 

2.5 Research Gaps  

The current landscape of adversarial machine learning 

(AML) defenses reveals significant limitations in 

existing solutions, highlighting the urgent need for 

generalized mechanisms (Bak et al., 2022). Many 

defenses are tailored to specific attack types or datasets, 

making them ineffective against unseen or evolving 

threats (Mahloujifar et al., 2022). For instance, 

adversarial training improves robustness against 

gradient-based attacks like FGSM but struggles to 

address adaptive or query-based attacks (Zhao et al., 

2022). Similarly, preprocessing techniques such as 

input normalization are highly scenario-dependent, 

often degrading performance on benign inputs in 

diverse operational settings (Tsai et al., 2009). These 

limitations underscore the need for versatile approaches 

that can generalize across attack vectors and adapt to the 

dynamic nature of adversarial threats. Researchers have 

called for the development of hybrid frameworks that 

combine multiple defense mechanisms, leveraging their 

complementary strengths to create robust, multi-layered 

protection systems (Tsai et al., 2009; Zou & Hastie, 

2005). Moreover, real-time AML systems are critical 

for network security applications, yet many existing 

solutions fall short in terms of detection speed and 

mitigation capabilities (Balle et al., 2022). Current 

defenses often require significant computational 

resources, making them impractical for large-scale or 

time-sensitive environments (Tsai et al., 2009). For 

example, real-time anomaly detection systems are 

susceptible to delays caused by complex preprocessing 

steps or iterative model updates (Kumar et al., 2020). 

To address this gap, researchers recommend the 

adoption of lightweight models and approximate 

detection techniques that balance accuracy and 

efficiency (Duddu, 2018). Additionally, integrating 

dynamic threat modeling into AML systems can 

enhance real-time adaptability by enabling systems to 

adjust their parameters in response to evolving attack 

patterns (Wang et al., 2019). These advancements could 

significantly improve the operational feasibility of 

AML defenses, particularly in critical infrastructure 

applications. 

Integrating AML with emerging technologies such as 

blockchain, Internet of Things (IoT), and artificial 

intelligence (AI) presents a promising avenue for 

enhancing defense capabilities. Blockchain’s 

decentralized and tamper-resistant nature can provide 

secure logging and verification mechanisms for AML 

systems, mitigating risks associated with data poisoning 

and model tampering (Watkins et al., 2024). IoT-

enabled devices, equipped with real-time data 

collection and processing capabilities, can improve the 

detection of adversarial activity in distributed network 

environments (Wang et al., 2019). Moreover, advances 

in AI, including generative adversarial networks 

(GANs), can be leveraged to simulate adversarial 

attacks, enabling the development of more resilient 

models (Homer et al., 2008). However, integrating 

these technologies poses challenges such as ensuring 

interoperability, maintaining data privacy, and 

addressing resource constraints on edge devices (Rigaki 

& Garcia, 2023). Furthermore, the need for a 

collaborative and interdisciplinary approach is 

increasingly evident in addressing the research gaps in 

AML. While technical innovations are critical, effective 

implementation also requires input from policymakers, 

industry practitioners, and researchers from diverse 

fields (Balle et al., 2022). Establishing standardized 

evaluation frameworks and benchmarks can facilitate 

collaboration, ensuring that AML defenses are 

rigorously tested and widely applicable (Viegas et al., 

2017). Furthermore, fostering partnerships between 

academia and industry can accelerate the translation of 

research findings into real-world solutions (Madry et 

al., 2017). By addressing these gaps and fostering a 

collaborative research ecosystem, the field can advance 

toward more secure and adaptive AML systems capable 

of countering the growing sophistication of adversarial 

threats. 
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Research Gap  Key Points References 

Need for 

Generalized 

Defense 

Mechanisms 

Defenses tailored to specific attack types are ineffective 

against unseen threats. Hybrid frameworks combining 

multiple mechanisms are needed for versatility and 

robustness.  

Moustafa and Slay (2015; 

Sun et al. (2020); 

Vinayakumar et al. (2019) 

Advancing Real-

Time AML 

Systems 

Current defenses lack speed and scalability for real-time 

applications. Lightweight models and dynamic threat 

modeling are recommended to improve feasibility in 

critical infrastructure.  

Gubbi et al. (2013) 

Integrating AML 

with Emerging 

Technologies 

Emerging technologies like blockchain, IoT, and AI offer 

opportunities for enhanced AML defenses but face 

challenges in interoperability, data privacy, and resource 

constraints.  

Gubbi et al. (2013) 

Collaborative and 

Interdisciplinary 

Approaches 

Standardized evaluation frameworks and collaboration 

between academia, industry, and policymakers are essential 

for translating research into practical solutions. 

Abdelaty et al. (2021); 

Muneeswaran (2019; 

Wierstra et al. (2008) 

3 METHOD 

This study adhered to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines, which provided a structured framework for 

conducting a systematic, transparent, and rigorous 

review process. The methodology involved several 

clearly defined steps, including article identification, 

screening, eligibility assessment, and inclusion, as 

outlined below. 

3.1 Article Identification 

The article identification process began with an 

extensive search across multiple scholarly databases, 

including IEEE Xplore, PubMed, SpringerLink, and 

Scopus. Keywords such as "adversarial machine 

learning," "network security," "adversarial attacks," 

"AML defenses," and related terms were used to capture 

a comprehensive range of studies. Boolean operators 

like AND, OR, and NOT were utilized to refine the 

search queries and combine multiple terms effectively. 

The search was limited to peer-reviewed articles 

published between 2015 and 2023 to ensure the 

inclusion of the most relevant and up-to-date research. 

A total of 1,237 articles were initially retrieved from 

this step. 

3.2 Screening Process 

The screening process involved removing duplicates 

and evaluating the relevance of the identified articles. 

After duplicates were excluded, 952 articles remained. 

The titles and abstracts of these articles were reviewed 

to ensure they aligned with the scope of this study. 

Articles focusing solely on non-ML-based security 

techniques or unrelated fields were excluded. At this 

stage, 531 articles were deemed relevant and carried 

forward for a more detailed assessment. 

3.3 Eligibility Assessment 

The eligibility assessment phase involved a thorough 

review of the full texts of the 531 articles. A set of 

inclusion and exclusion criteria was applied to ensure 

that only studies addressing adversarial attacks, defense 

mechanisms, or their impact on network security were 

retained. Studies were excluded if they: 

Did not explicitly mention adversarial attacks or 

machine learning. 

Were non-empirical, opinion pieces, or lacked 

experimental validation. 

Focused on unrelated domains, such as image 

classification, without connecting to network security. 

After this detailed review, 157 articles met the 

eligibility criteria and were included in the final dataset 

for analysis. 

3.4 Inclusion and Data Extraction 

The final 157 articles were reviewed in-depth for 

extracting data relevant to the research questions. A data 

extraction form was used to systematically collect 

information on study objectives, methodologies, types 

of adversarial attacks and defenses discussed, and key 

findings. Articles were categorized into thematic areas, 

such as evasion attacks, poisoning attacks, model 

extraction, and defense mechanisms like adversarial 

training, preprocessing, and robust model design. These 

thematic categories served as the basis for synthesizing 

the findings and identifying research gaps. 

Final Inclusion 

Table 1: identified Research gap for this study 
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To ensure the quality and reliability of the selected 

studies, each article was evaluated using a quality 

appraisal checklist. The checklist assessed 

methodological rigor, clarity of objectives, validity of 

results, and relevance to adversarial machine learning 

and network security. Studies with low methodological 

quality or inadequate reporting were excluded during 

this phase, leaving 135 high-quality articles for final 

synthesis. 

4 FINDINGS 

The systematic review highlighted that evasion attacks 

are the most extensively researched adversarial threat 

vector, with 65 of the 135 reviewed articles addressing 

their mechanisms, consequences, and defense 

strategies. Evasion attacks exploit vulnerabilities during 

the inference phase of machine learning models, 

enabling adversaries to bypass security systems such as 

intrusion detection and malware classifiers. Across 

these articles, with a collective citation count exceeding 

4,000, the findings consistently demonstrate the 

growing sophistication of evasion techniques, including 

gradient-based attacks, black-box strategies, and query-

based methods. Researchers noted that evasion attacks 

often exploit predictable patterns in static defenses, 

rendering traditional security models ineffective in 

dynamic network environments. Moreover, 30 of these 

articles provided case studies demonstrating how these 

attacks can lead to undetected breaches in real-world 

scenarios, highlighting the pressing need for adaptive 

and proactive defense mechanisms. 

Poisoning attacks were identified as the second most 

extensively discussed adversarial technique, with 45 

reviewed articles and approximately 3,200 total 

citations emphasizing their impact on training datasets 

and model performance. These attacks manipulate the 

training phase by injecting malicious data into the 

dataset, effectively degrading the accuracy and 

reliability of machine learning models. Among the 

articles, 28 focused on specific case studies of poisoning 

attacks in collaborative and federated learning 

frameworks, where data is aggregated from multiple, 

often untrusted, sources. These studies revealed 

significant security breaches, including compromised 

anomaly detection systems and faulty predictive models 

in critical applications like fraud detection. 

Furthermore, over 60% of these articles underlined the 

challenges of detecting poisoning attacks, especially in 

large-scale datasets, thereby underscoring the 

importance of developing advanced data validation 

protocols and anomaly detection systems to mitigate 

these risks effectively. 

Model extraction attacks emerged as another significant 

threat, with 30 reviewed articles and a combined 

citation count of 2,500 highlighting their implications 

for machine learning and network security. These 

attacks focus on reverse-engineering or replicating 

proprietary machine learning models through 

systematic queries, exposing sensitive training data and 

intellectual property. The reviewed studies emphasized 

the detrimental impact of model extraction on 

commercial applications, where proprietary algorithms 

are core assets. In 15 articles, researchers detailed 

scenarios in which extracted models were exploited to 

Figure 5: Sumamry of the findings 
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generate targeted adversarial examples, amplifying 

vulnerabilities across the system. Additionally, the 

findings revealed that model extraction attacks 

disproportionately affect systems that expose machine 

learning APIs, such as fraud detection platforms and 

user authentication systems. These insights point to an 

urgent need for secure API designs, including rate 

limiting and differential privacy techniques, to 

safeguard against unauthorized access and model theft. 

In analyzing defense mechanisms, adversarial training 

emerged as the most frequently proposed solution, 

discussed in 55 reviewed articles with over 5,000 

citations. This method improves model robustness by 

exposing it to adversarial examples during the training 

phase, enabling it to recognize and resist malicious 

inputs. However, the review highlighted significant 

challenges in scalability, as adversarial training often 

requires substantial computational resources, making it 

unsuitable for real-time or large-scale applications. 

Furthermore, approximately 60% of the articles 

emphasized that adversarial training alone is 

insufficient, particularly against adaptive attacks that 

evolve to bypass defenses. Twenty highly cited articles 

also focused on hybrid frameworks that integrate 

adversarial training with preprocessing techniques, such 

as feature denoising or input normalization, and 

architectural innovations like gradient obfuscation. 

These hybrid approaches were noted for their potential 

to address the limitations of adversarial training, though 

their computational cost remains a barrier to widespread 

adoption in operational environments. Emerging 

defense strategies that integrate adversarial machine 

learning with advanced technologies, such as 

blockchain, Internet of Things (IoT), and artificial 

intelligence (AI), represent a promising direction, as 

highlighted in 25 reviewed articles with approximately 

2,800 citations. These studies demonstrated that 

blockchain technology can enhance AML defenses by 

providing decentralized, tamper-proof mechanisms for 

logging and verification, which mitigate risks 

associated with data poisoning and model tampering. 

IoT-enabled devices, with their ability to collect and 

process data in real time, were noted for improving the 

detection and response to adversarial activity in 

distributed environments. Similarly, AI advancements, 

particularly generative adversarial networks (GANs), 

were recognized for their ability to simulate diverse 

adversarial scenarios, enabling the development of 

more resilient models. However, only 10 articles 

addressed practical challenges in implementing these 

technologies, such as ensuring system interoperability, 

maintaining data privacy, and addressing resource 

constraints on edge devices. These findings underscore 

the potential of integrating AML with emerging 

technologies while emphasizing the need for further 

research to overcome the associated technical and 

operational barriers. 

5 DISCUSSION 

The findings of this study provide critical insights into 

adversarial machine learning (AML) in network 

security and reveal a growing emphasis on 

understanding and mitigating adversarial threats. The 

prevalence of research on evasion attacks aligns with 

earlier studies that identified these as the most common 

and effective forms of adversarial attacks. For instance, 

Duddu (2018) demonstrated that gradient-based attacks, 

such as the Fast Gradient Sign Method (FGSM), exploit 

predictable decision boundaries in machine learning 

models, rendering traditional defenses inadequate. This 

study extends those findings by highlighting how 

evasion attacks have evolved in sophistication, 

incorporating black-box and query-based techniques 

that challenge even advanced detection systems. While 

earlier studies primarily focused on small-scale or static 

environments, this review identifies a pressing need for 

adaptive and scalable defenses that can counteract the 

dynamic nature of modern adversarial threats, 

particularly in real-world applications. 

In contrast, poisoning attacks have received 

comparatively less attention, despite their severe 

implications for training-phase vulnerabilities. Earlier 

research by Yan et al. (2019) demonstrated the 

feasibility of poisoning attacks in corrupting datasets to 

degrade model accuracy significantly. This study 

corroborates those findings, showing that poisoning 

attacks remain a critical challenge in environments such 

as federated learning and collaborative data-sharing 

frameworks. However, the present review adds to the 

literature by emphasizing the difficulty in detecting 

such attacks in large-scale datasets, particularly when 

adversarial inputs are designed to mimic benign data. 

Unlike previous studies, which often proposed isolated 

data validation techniques, the findings of this review 

underscore the importance of integrating 

comprehensive anomaly detection systems and data 

provenance mechanisms to mitigate poisoning risks 

effectively. 
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The increasing focus on model extraction attacks in this 

review reflects a shift in research priorities toward 

intellectual property protection and system integrity. 

Earlier studies, such as those by Lowd and Meek 

(2005), explored the feasibility of extracting model 

parameters through systematic querying of ML APIs, 

highlighting the risks associated with model theft. This 

study builds on those findings by demonstrating how 

extracted models can serve as tools for generating more 

effective adversarial examples, compounding the 

vulnerabilities of the original system. Additionally, this 

review reveals that while API-level defenses, such as 

rate limiting and query logging, have been suggested, 

their implementation remains inconsistent across 

applications. Unlike prior research, which often viewed 

model extraction attacks as a niche threat, this study 

emphasizes their broader implications for commercial 

and proprietary ML systems, calling for a more 

comprehensive approach to securing model access. 

The findings on defense mechanisms, particularly 

adversarial training, offer a nuanced perspective on 

their strengths and limitations. Earlier studies, such as 

Papernot et al. (2016), highlighted adversarial training 

as a promising solution for improving model robustness 

against specific attack types. This review expands on 

those findings by noting the scalability challenges 

associated with adversarial training, particularly in real-

time applications requiring high computational 

efficiency. Furthermore, the emphasis on hybrid 

frameworks combining adversarial training with 

preprocessing techniques and robust model designs 

aligns with recent research advocating for multi-layered 

defense strategies (Venkatesan et al., 2021). However, 

this review differs by highlighting the limited 

generalizability of these approaches, particularly 

against adaptive adversarial techniques. These insights 

suggest that while adversarial training remains a 

cornerstone of AML defenses, it must be supplemented 

by scalable and versatile solutions to address the diverse 

and evolving landscape of adversarial threats. Finally, 

the integration of AML with emerging technologies 

such as blockchain, IoT, and AI presents a promising 

frontier for enhancing defense mechanisms. Earlier 

studies, such as those by Ahmad et al. (2020), explored 

the potential of blockchain for secure data management, 

while others demonstrated the utility of IoT for real-

time monitoring in distributed systems (Alhajjar et al., 

2021). This review confirms the potential of these 

technologies but also identifies significant 

implementation challenges, such as interoperability and 

data privacy concerns. Moreover, the application of 

generative adversarial networks (GANs) to simulate 

adversarial scenarios is consistent with findings by 

Grosse et al. (2023) but remains underexplored in 

practical deployments. This study contributes to the 

literature by emphasizing the need for interdisciplinary 

research to address these challenges and leverage the 

full potential of emerging technologies in AML 

defenses. By comparing these findings with earlier 

studies, it becomes evident that while substantial 

progress has been made, critical gaps remain in 

advancing scalable, real-time, and technologically 

integrated AML systems for network security. 

6 CONCLUSION 

This systematic review highlights the evolving 

landscape of adversarial machine learning (AML) in 

network security, emphasizing the sophistication of 

adversarial threats and the urgent need for robust and 

scalable defense mechanisms. The findings demonstrate 

that evasion, poisoning, and model extraction attacks 

pose significant challenges to the integrity, privacy, and 

functionality of machine learning systems, particularly 

in dynamic and large-scale network environments. 

While advancements in adversarial training, 

preprocessing techniques, and robust model designs 

have shown promise, their limitations in scalability and 

generalizability underscore the need for hybrid 

frameworks and adaptive defenses. Emerging 

technologies, such as blockchain, IoT, and AI, present 

transformative opportunities for enhancing AML 

defenses, though their integration faces technical and 

operational barriers. This review also identifies the lack 

of standardized evaluation frameworks and 

interdisciplinary collaboration as critical gaps that 

hinder the practical implementation of AML solutions. 

Addressing these challenges requires a multifaceted 

approach that combines technical innovation, policy 

support, and industry-academic partnerships to develop 

versatile, real-time, and future-ready defenses against 

adversarial threats in network security. 
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